Publication date: 15 May 2016
Source:Geoderma, Volume 270
Author(s): B. Seshadri, N.S. Bolan, H. Wijesekara, A. Kunhikrishnan, R. Thangarajan, F. Qi, R. Matheyarasu, C. Rocco, K. Mbene, R. Naidu
Regular application of phosphate (P) fertilisers has been identified as the main source of heavy metal(loid) contamination including cadmium (Cd) in agricultural soils. Some of these P fertilisers that act as a source of Cd contamination of soils have also been found to act as a sink for the immobilisation of this metal(loid). In paddy soils, redox reactions play an important role in the (im)mobilisation of nutrients and heavy metal(loid)s, as a result of flooding of the rice plains. Although a number of studies have examined the potential value of P compounds in the immobilisation of metals in contaminated soils, there has been no comprehensive review on the mechanisms involved in the P-induced (im)mobilisation of Cd in paddy soils. There are a number of factors that influences P induced Cd (im)mobilisation in paddy soils that include pH, redox reactions, liming effect, rhizosphere acidification and root iron plaques. Following a brief overview of the reactions of Cd and common P compounds that are used as fertiliser in soils, the review focuses on the above mentioned mechanisms for the (im)mobilisation of Cd by P compounds in paddy soils. The role of iron plaques on Cd status in soil and rice plants is also discussed followed by a summary and future research needs.
![image]()
Source:Geoderma, Volume 270
Author(s): B. Seshadri, N.S. Bolan, H. Wijesekara, A. Kunhikrishnan, R. Thangarajan, F. Qi, R. Matheyarasu, C. Rocco, K. Mbene, R. Naidu
Graphical abstract
