Quantcast
Channel: ScienceDirect Publication: Geoderma
Viewing all articles
Browse latest Browse all 1990

Effects of long-term inorganic and organic fertilizations on the soil micro and macro structures of rice paddies

$
0
0
Publication date: 15 March 2016
Source:Geoderma, Volume 266
Author(s): Hu Zhou, Huan Fang, Sacha Jon Mooney, Xinhua Peng
The soil structure of paddy soil is very dynamic from the aggregate to the pedon scale because of intensive anthropogenic management strategies. In this study, we tested the hypothesis that long-term inorganic and organic fertilizations can affect soil structure at different scales. Microstructure assessed by soil aggregates (3–5mm in diameter) and macrostructure assessed by small soil cores (CoreS) (5cm in diameter, 5cm in height) and large soil cores (CoreL) (10cm in diameter, 10cm in height) were sampled from three long-term fertilization treatments, including no fertilizer (CK), application of inorganic fertilizer (NPK), and a combination of inorganic fertilizer and organic manure (NPKOM), established in 1982. They were scanned at two scales with two types of micro-computed tomography (micro-CT) and quantified using image analysis. Results showed that relative to CK treatment, long-term NPKOM fertilization increased soil organic C (SOC) by 28% and available water content (AWC) by 20%, but decreased soil bulk density by 0.2gcm3 whereas NPK showed no difference. Soils under CK and NPK treatments exhibited an identical dense structure at both aggregate and core scales in which pores were mainly cracks resulting from shrink/swell processes, and showed no significant difference in porosity and size distribution of the CT-identified pores (>3.7μm). Compared with the CK treatment, the soil in the NPKOM treatment had greater intra- and inter-aggregate pores, and increased porosity by 58.3%, 144.9%, and 65.9% at aggregate, CoreS, and CoreL scales, respectively. These were attributed to the biopores formed from decayed roots, stubble, and organic manures as a result of increased yields and direct amendment of organic manure. Overall, this study demonstrates that organic fertilization can improve the physical qualities of paddy soils across different scales but inorganic fertilization in isolation does not.


Viewing all articles
Browse latest Browse all 1990

Trending Articles