Quantcast
Viewing all articles
Browse latest Browse all 1990

Extraction of available and labile fractions of mercury from contaminated soils: The role of operational parameters

Publication date: December 2015
Source:Geoderma, Volumes 259–260
Author(s): Ana Teresa Reis , Cláudia B. Lopes , Christine M. Davidson , Armando C. Duarte , Eduarda Pereira
One of the recognized challenges in chemical extraction of mercury from soil is the diversity of procedures that are currently available in literature and that differ in terms of the extractant solution used, soil:extractant ratio and duration of extraction. Therefore, this study focused on establishing the role of operational parameters for extraction of the available and labile fractions of mercury from soils, considering different soil:extractant ratios and the kinetics of extraction. The suitability of 1.0molL1 ammonium acetate at pH7 and 0.1molL1 HCl as extractants for the available fraction and the extraction of the labile fraction using 0.5molL1 hydrochloric acid was investigated. No statistical differences were found between ammonium acetate and 0.1molL1 HCl; therefore both extractants can be used for estimating the available fraction. It was also observed that a soil:extractant ratio of 1.5g of soil to 100mL of extractant favors mercury extraction. For the available fraction an extraction of 30min seems enough, as no further significant change was observed in the quantity of mercury extracted thereafter. For the labile fraction increase the extraction duration to at least 24h is recommended. The data was fitted into kinetic models, and it was observed that the two first-order reactions and the diffusion models help to understand the behavior of mercury extraction from soil, clearly showing that in all cases the rate of mercury extraction was faster in the first 10h and declined after that period. The characteristics of the soil influenced the extraction of mercury, and it was verified that pH and particle size of the soil influenced the mercury extraction process, as results suggested that an acidic soil might have a reduced ability to strongly retain metals and soils with higher porosity showed lower rates of mercury extraction.


Viewing all articles
Browse latest Browse all 1990

Trending Articles